4,240 research outputs found

    Off-shell N=(4,4) supersymmetry for new (2,2) vector multiplets

    Full text link
    We discuss the conditions for extra supersymmetry of the N=(2,2) supersymmetric vector multiplets described in arXiv:0705.3201 [hep-th] and in arXiv:0808.1535 [hep-th]. We find (4,4) supersymmetry for the semichiral vector multiplet but not for the Large Vector Multiplet.Comment: 15 page

    Palatini Variational Principle for NN-Dimensional Dilaton Gravity

    Get PDF
    We consider a Palatini variation on a general NN-Dimensional second order, torsion-free dilaton gravity action and determine the resulting equations of motion. Consistency is checked by considering the restraint imposed due to invariance of the matter action under simple coordinate transformations, and the special case of N=2 is examined. We also examine a sub-class of theories whereby a Palatini variation dynamically coincides with that of the "ordinary" Hilbert variational principle; in particular we examine a generalized Brans-Dicke theory and the associated role of conformal transformations.Comment: 16 pages, LaTe

    The Nonlinear Multiplet Revisited

    Full text link
    Using a reformulation of the nonlinear multiplet as a gauge multiplet, we discuss its dynamics. We show that the nonlinear ``duality'' that appears to relate the model to a conventional σ\sigma-model introduces a new sector into the theory.Comment: 11 pages, ITP-SB-94-23, USITP-94-1

    Sigma models with off-shell N=(4,4) supersymmetry and noncommuting complex structures

    Full text link
    We describe the conditions for extra supersymmetry in N=(2,2) supersymmetric nonlinear sigma models written in terms of semichiral superfields. We find that some of these models have additional off-shell supersymmetry. The (4,4) supersymmetry introduces geometrical structures on the target-space which are conveniently described in terms of Yano f-structures and Magri-Morosi concomitants. On-shell, we relate the new structures to the known bi-hypercomplex structures.Comment: 20 pages; v2: significant corrections, clarifications, and reorganization; v3: discussion of supersymmetry vs twisted supersymmetry added, relevant signs corrected

    Linearizing Generalized Kahler Geometry

    Full text link
    The geometry of the target space of an N=(2,2) supersymmetry sigma-model carries a generalized Kahler structure. There always exists a real function, the generalized Kahler potential K, that encodes all the relevant local differential geometry data: the metric, the B-field, etc. Generically this data is given by nonlinear functions of the second derivatives of K. We show that, at least locally, the nonlinearity on any generalized Kahler manifold can be explained as arising from a quotient of a space without this nonlinearity.Comment: 31 pages, some geometrical aspects clarified, typos correcte

    ADE-Quiver Theories and Mirror Symmetry

    Get PDF
    We show that the Higgs branch of a four-dimensional Yang-Mills theory, with gauge and matter content summarised by an ADE quiver diagram, is identical to the generalised Coulomb branch of a four-dimensional superconformal strongly coupled gauge theory with ADE global symmetry. This equivalence suggests the existence of a mirror symmetry between the quiver theories and the strongly coupled theories.Comment: 8 pages, 4 figures. Talk delivered by UL at D.V. Volkov Memorial Conference, July 25-29, 2000, Kharkov, to be published in the proceeding

    Properties of hyperkahler manifolds and their twistor spaces

    Full text link
    We describe the relation between supersymmetric sigma-models on hyperkahler manifolds, projective superspace, and twistor space. We review the essential aspects and present a coherent picture with a number of new results.Comment: 26 pages. v2: Sign mistakes corrected; Kahler potential explicitly calculated in example; references added. v3: Published version--several small clarifications per referee's reques

    An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: a case study with cavity nesters

    Get PDF
    The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales

    The Semi-Chiral Quotient, Hyperkahler Manifolds and T-duality

    Full text link
    We study the construction of generalized Kahler manifolds, described purely in terms of N=(2,2) semichiral superfields, by a quotient using the semichiral vector multiplet. Despite the presence of a b-field in these models, we show that the quotient of a hyperkahler manifold is hyperkahler, as in the usual hyperkahler quotient. Thus, quotient manifolds with torsion cannot be constructed by this method. Nonetheless, this method does give a new description of hyperkahler manifolds in terms of two-dimensional N=(2,2) gauged non-linear sigma models involving semichiral superfields and the semichiral vector multiplet. We give two examples: Eguchi-Hanson and Taub-NUT. By T-duality, this gives new gauged linear sigma models describing the T-dual of Eguchi-Hanson and NS5-branes. We also clarify some aspects of T-duality relating these models to N=(4,4) models for chiral/twisted-chiral fields and comment briefly on more general quotients that can give rise to torsion and give an example.Comment: 31 page

    Gauged (2,2) Sigma Models and Generalized Kahler Geometry

    Get PDF
    We gauge the (2,2) supersymmetric non-linear sigma model whose target space has bihermitian structure (g, B, J_{\pm}) with noncommuting complex structures. The bihermitian geometry is realized by a sigma model which is written in terms of (2,2) semi-chiral superfields. We discuss the moment map, from the perspective of the gauged sigma model action and from the integrability condition for a Hamiltonian vector field. We show that for a concrete example, the SU(2) x U(1) WZNW model, as well as for the sigma models with almost product structure, the moment map can be used together with the corresponding Killing vector to form an element of T+T* which lies in the eigenbundle of the generalized almost complex structure. Lastly, we discuss T-duality at the level of a (2,2) sigma model involving semi-chiral superfields and present an explicit example.Comment: 33 page
    • 

    corecore